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We consider the dynamics of a driven Bose-Einstein condensate with positive scattering length. Employing
an accustomed variational treatment we show that when the scattering length is time modulated as a�1
+� sin���t�t��, where ��t� increases linearly in time, i.e., ��t�=�t, the response frequency of the condensate
locks to the eigenfrequency for small values of � and �. A simple analytical model is presented which explains
this phenomenon by mapping it to an auto-resonance, i.e., close to resonance the reduced equations describing
the collective behavior of the condensate are equivalent to those of a virtual particle trapped in a finite-depth
energy minimum of an effective potential.
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I. INTRODUCTION

Ever since the experimental attainment of Bose-Einstein
condensates �BECs� back in 1995 �1� there has been a surge
of research on this topic. The reason for this scientific effer-
vescence is to be found in the almost unprecedented experi-
mental maneuverability of these ultracold gases which en-
grossed scientists from many distinct fields such as nonlinear
dynamics, quantum and nonlinear optics, nuclear and con-
densed matter physics, to name just a few. Equally appealing
are the theoretical insights into the dynamics of Bose-
condensed gases obtained through the so-called Gross-
Pitaevskii equation �GPE� �2�, a cubic Schrödinger equation
where the nonlinearity accounts at mean-field level for the
interatomic interactions close to absolute zero temperature.

Among the most notable results on the nonlinear side of
BECs are the theoretical prediction and the subsequent ex-
perimental realization of distinct soliton classes and detailed
accounts of their underlying dynamics, see Refs. �3–7� and
references therein for some of the recent developments, and
the nonlinear infringement of Bloch’s periodicity condition.
The latter implies that a condensate loaded into the so-called
optical lattice, i.e., a periodic potential generated by two
counterpropagating laser beams, can have a periodic spatial
profile with a period different than that of the underlying
lattice �8�. Other works include investigations into the para-
metric resonances exhibited by a Bose-condensed gas whose
scattering length is time modulated on a constant frequency
close to the eigenfrequency of the system �see Refs. �9–11�,
and references therein�.

It is the purpose of this paper to investigate the nonlinear
dynamics of a repulsive Bose-condensed gas whose scatter-
ing length is time-modulated on a linearly increasing fre-
quency, i.e., a scattering length of the type a�1
+� sin���t�t��, where ��t�=�t. While cubic Schrödinger
equations have been scrutinized in nonlinear optics over the
past few decades, it is, however, only in BECs that one can
take advantage of the so-called Feshbach resonances �12� to
control the frequency on which the cubic term �i.e., the scat-
tering length� is modulated.

Employing a habitual variational treatment �14� we re-
duce the dynamics of a three-dimensional fully-symmetric
condensate to only one ordinary differential equation �ODE�.
Our main finding is that, for small values of �, the conden-
sate mode locks to the eigenfrequency, a peculiarity that dis-
appears for high values of �. As shown in Sec. IV, the con-
densate is collectively described by a single reduced ODE on
the condensates’ width that emulates the scenario of a par-
ticle trapped in the finite-depth energy minimum of an effec-
tive potential well.

The paper is structured as follows. Section II is dedicated
to the GPE and to the variational method that simplifies the
condensate dynamics to an ODE. Section III gives numerical
results on frequency locking, while Sec. IV puts forward a
simple analytical model that explains the locking through the
so-called autoresonance. Section V gathers our conclusions.

II. THE GROSS-PITAEVSKII EQUATION

The dynamics of Bose-condensed gases close to absolute
zero temperature is accurately described by the Gross-
Pitaevskii equation. In three spatial dimensions it reads

i�
��

�t
= −

�2

2m
�2� + V�r�� + U���2� , �1�

where V�r� is the trapping potential, here taken as
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V�r� =
m

2
�2r2, �2�

where f =� /2� is the trap frequency �in Hz� that fixes the
strength of the magnetic trap. For simplicity we restrict our
analysis to symmetric potentials. The coefficient of the cubic
term is U=4��2a /m, where a is the two-body scattering
length and m the atomic mass.

Due to the intricate nature of the GPE we shall further
simplify the problem by restricting � to an amenable family
of trial functions and study the time evolution of the param-
eters that define it. This reduces the infinite-dimensional
problem of solving Eq. �1� to solving an ODE. A natural
choice for the trial function �see Refs. �13,14� for the BEC
results, and Refs. �15,16� for similar calculations carried out
in nonlinear optics�, which actually corresponds to the exact
solution in the linear limit �U=0�, is the three-dimensional
Gaussianlike profile

��r,t� = A�t�exp�−
r2

2w2 + ir2�	 , �3�

where A is the �complex-valued� wave-function at the center
of the cloud, w is the width of the condensate while �, the
so-called chirp, is the canonical conjugate of w.

After the classical variational recipe �see Refs. �14� for
details� the ansatz gives rise to the following equation in the
width of the condensate:

d2

dt2w + �2w =
�2

m2

1

w3 +
U

2
2m

N

�3/2w4 . �4�

Notice that this equation holds for both time-dependent and
time-independent scattering length, i.e., the equation is left
unchanged when U→U�t�. It is worth mentioning that the
equation for the width does not depend on the chirp � and
that, in turn, the equation for � is driven by the width.

Introducing P=
2/�Na /a0, 	=�t and the rescaled width
v=w /a0, where a0=
� /m�, Eq. �4� reads

d2

d	2v + v =
1

v3 +
P

v4 . �5�

Around the equilibrium point ṽ, defined implicitly by

ṽ =
1

ṽ3 +
P

ṽ4 , �6�

the dynamics of the width of the condensate v= ṽ+
 is given
by

d2

d	2
 + 
�1 +
3

ṽ4 +
4P

ṽ5 � = 0, �7�

indicating a period of T=2� /�P where the natural eigenfre-
quency of the system is

�P = �1 +
3

ṽ4 +
4P

ṽ5 �1/2

. �8�

III. MODE LOCKING

Sweeping linearly the frequency of our driving field,
which in turn gives a scattering length that goes as a�1
+� sin��	2��, we are faced with the nonlinear ODE

d2

d	2v + v =
1

v3 +
P

v4 �1 + � sin��	2�� . �9�

Equation �9� is solved through an embedded Runge-Kutta
method that uses a 4-5 Dormand-Prince pair �17�.

Our main finding is that for small values of � and � �and
	��P /2�� the width of the condensate shows small ampli-
tude oscillations of frequency equal to the effective fre-
quency of the drive �i.e., �osc=2�	�. For 	��P /2� the
width of the condensate shows oscillations of constant am-
plitude �whose frequency is equal to �P, the natural fre-
quency of the condensate� even though the driving field is
still present. We call this process “mode locking” �18�. As
demonstrated in the next section close to resonance the re-
duced equations describing the collective behavior of the
condensate are equivalent to those of a virtual particle
trapped in a finite-depth energy-minimum of an effective po-
tential.

Locking phenomena go a long way back: as early as the
17th century the Dutch physicist Christian Huygens noted
that two clocks hanging back-to-back on the wall tend to
synchronize their motion. This type of locking is generally
present in dissipative systems with competing frequencies.
The two frequencies may arise dynamically within the sys-
tem �as for the two clocks� or through the coupling of an
oscillating motion to an external periodic force. In the case
of a magnetically trapped BEC �which is usually regarded/
modeled as a nondissipative system� we find that the fre-
quency sweep entailed by the sin��t2� term gives rise to a
breathing mode whose frequency is equal to the natural fre-
quency of the system.

We illustrate our results on mode-locking by showing the
dynamics of the width of the condensate for P=100. We
purposedly chose parameter values that would yield experi-
mental feasible situations. For example, if one considers a
magnetic trap with frequency f 
159 Hz �i.e., �=2�f
=1000� for a dilute BEC �13� of approximately 24 500 23Na,
the adimensionalization yields a temporal rescaling 	
=1000t such that, in all our examples, time 	 is measured in
ms. In Fig. 1 we have plotted the dynamics of the width for
�=0.01 and �=0.05. This is a typical mode-locking dynam-
ics that includes two distinct regions �see Fig. 1�: �i� a tran-
sient regime during which the response frequency of the con-
densate is equal to the effective frequency of the drive �i.e.,
�osc=2�	� and �ii� the mode-locked part when the width of
the condensate shows periodic oscillations of constant ampli-
tude. For small � the critical time 	c needed to see response
on the system’s eigenfrequency may be obtained by writing
	=	c+
	 ��
	��1� and expanding the argument of the drive
�	2 yields an effective frequency �P=2�	c, and thus 	c
=�P /2�. Namely, for small � the transient fades out when
the effective frequency of the driving field matches the
eigenfrequency of the system. Notice, however, that in Fig. 1
the time needed to stabilize the amplitude is longer as � is
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somewhat large. Fig. 1 is to be contrasted with Fig. 4 ��
=0.001� where the mode-locking takes place exactly at the
predicted 	c.

In Fig. 2 we have plotted the dynamics of the conden-
sate’s width for a relatively large value of �=1.0 and �
=0.05. This is the typical dynamics of the condensate when
frequency locking is lost due to the high strength of the
driving field. Notice the “bouncing ball” behavior, a pecu-
liarity of the dynamics of the system for high � due to the
1/v3 singularity �14�.

In Fig. 3 we have plotted the dynamics of the conden-
sate’s width for an intermediate value of �=0.065 and �
=0.01 to illustrate the dynamics outside the linear regime

�19�. The nonlinear regime shows two distinct features: �i�
while the observed frequency shows only slight deviations
from Eq. �8�, the shape of the oscillations shows contribu-
tions from the higher harmonics, i.e., strong deviation from
the shape of a sine-wave and �ii� in addition to the mode-
locking seen approximately at 	c
�P /2� there is a series of
additional super-harmonic nonlinear resonances approxi-
mately at 	c=n�P /2�, where n is an integer larger than one
�see Ref. �20��. This latter feature falls outside the simple
model put forward in the next section which only accounts
for the linear process, i.e., the modelocking at 	=�P /2�.

Finally, in Fig. 4 we have plotted the dynamics of the
condensate’s width for �=0.065 and small value of �
=0.001. For this small value of � the resonances are seen to
appear exactly at the predicted 	c=n�P /2�
1115n �even
for large values of n�.

While the reported numerics rely on variational computa-
tions we have found the same qualitative behavior in the
GPE �21�. Finally, it is important to notice that the frequency
locking reported in this paper takes places both for the
ground state of the condensate and its excited states. Soli-
tons, for instance, are excited into breather states by the driv-
ing field as will be shown elsewhere �21�.

IV. ANALYTIC MODEL

Following the recipe of auto-resonance phenomena put
forward by Friedland and collaborators �see Ref. �22�, and
references therein� we recast v as

v = ṽ + 
�	� , �10�

where ṽ is the equilibrium width �cf. Eq. �6�� and 
�	� mea-
sures the deviation from equilibrium. Refraining to the linear
regime, i.e., 
�	��1, Eq. �9� reduces to

FIG. 1. �Color online� The dynamics of the width of the con-
densate for P=100, �=0.01, and �=0.05. The condensate starts to
respond periodically at 	c=�P /2�
22; the time needed to stabilize
the amplitude is, however, slightly longer. This example corre-
sponds to 24 500 23Na loaded in a magnetic trap with frequency
159 Hz and 	 is measured in ms.

FIG. 2. �Color online� The dynamics of the width of the con-
densate for P=100, �=1.0, and �=0.05. Notice the chaotic re-
sponse of the condensate and the bouncing ball behavior shown in
the inset. Same rescaling as in Fig. 1 so that 	 is measured in ms.

FIG. 3. �Color online� The dynamics of the width of the con-
densate for P=100, �=0.065, and �=0.01. The condensate starts to
respond periodically approximately at 	c=�P /2�
111 but there
are additional superharmonic nonlinear resonances at approximately
	c=n�P /2�, where n=2,3 ,4 , . . .. Same rescaling as in Fig. 1 so
that 	 is measured in ms.
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d2


d	2 + �P
2 
 =

�P

ṽ4 sin��	2� ,

where we have discarded a term linear in �
 for being second
order.

We study the dynamics close to resonance and show that
the condensate collectively behaves as a particle loaded in a
tilted cosinelike effective potential. We show that mode lock-
ing is equivalent to the effective dynamics of the particle
trapped in an energy minimum of the potential.

Taking 
=a�	�sin ��	� and discarding the second deriva-
tive of a with respect to 	, the so-called adiabatic assump-
tion, one has

i2ȧ�̇ + ia�̈ − a�̇2 + �P
2 a =

�P

ṽ4 exp�i�	2 − i�� ,

where ȧ=da /d	. Equating real and imaginary parts we ob-
tain

a�P
2 − a�̇2 =

�P

ṽ4 cos��	2 − �� �11�

for the real part, while the imaginary one gives

2ȧ�̇ + a�̈ =
�P

ṽ4 sin��	2 − �� . �12�

Refraining now to the case close to the resonance, i.e., we
limit the analysis to a vicinity of 	c such that

�̇�	c� � �P and �̈�	c� � 0,

the previous equations yield

�P − �̇ =
�P

2�Paṽ4 cos��	2 − �� �13�

and

d

d	
�a2� =

a�P

�Pṽ4 sin��	2 − �� . �14�

Defining the action I=a2 and the phase mismatch �=�	2

−� variables we can recast the previous equations as

�̇ = 2�	 − �P +
�P

2�P

Iṽ4

cos � �15�

and

İ =

I�P

�Pṽ4 sin � . �16�

In order for the condensate to stay mode locked � must be
close to 0 or � and the right hand side of Eq. �15� should be
equal to zero, i.e.,

�̇�	c� = 2�	c − �P +
�P

2�P

I0ṽ

4
cos �̃ = 0,

where I0 is the equilibrium action while �̃ is the equilibrium

phase mismatch. Notice that �̇=0 amounts to 	c=�P /2�, as
the last term can be discarded as being numerically small in

the small � limit. The solution of interest is �̃=�, for �̃
=0 corresponds to an energy maximum �see below�. Setting

I= I0+
 and �=�̃+�, where 
 and � are small, the dynam-
ics around the equilibrium is given by the following Hamil-
tonian system:

�̇ = 
S ,


̇ = − A sin � +
2�

S
,

where S=�P /4�Pṽ4I0
3/2 and A=
I0�P /�Pṽ4. The associated

Hamilton’s function is

H�
,�� =
S
2

2
+ V1��� ,

where the potential is given by

V1��� = − A cos � −
2��

S
.

If one is to linearize around �̃=0 the ensuing potential
would be

V2��� = A cos � +
2��

S
,

which has a maximum for �=0 and not a minimum as V1
has.

The frequency locking reported in the previous section is
now transparent: around �=� there is an energy minimum
corresponding to the system oscillating on its eigenfre-
quency, while around �=0 there is an energy maximum of
no physical interest. Though the linear model discussed
above shows an energy minimum independent of the value
of �, we conjecture that, in the initial nonlinear problem, the
energy minimum is of finite depth and there is a critical

FIG. 4. �Color online� The dynamics of the width of the con-
densate for P=100, �=0.065, and �=0.001. For such a small �
value, the condensate responds periodically precisely at 	c

=n�P /2�
1115n. Same rescaling as in Fig. 1 so that 	 is mea-
sured in ms.
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strength of the driving field above which the frequency lock-
ing is lost. This process is illustrated in Fig. 2.

V. CONCLUSIONS

In this paper we have shown by means of a variational
treatment that modulating the scattering length of a trapped
BEC with repulsive interactions as a�1+� sin��t2��, leads to
the locking of its response frequency to the eigenfrequency
for small values of �. Physically, the mode locking amounts
to a breathing mode whose frequency is equal to the natural
frequency of the system. To the best of our knowledge this is
the first paper to analyze mode locking in a BEC context. In
order to exhibit the physical mechanism behind it we have
restricted ourselves to a variational calculation that captures
the main dynamics. To this end we have used a simple ana-
lytical model and showed that the equations describing the
collective behavior of the condensate are equivalent to those

of a particle trapped in a finite-depth energy minimum of a
potential.

Future research should be focused on asymmetric three-
dimensional condensates and to analyzing the interplay be-
tween the inherent mode-locking processes that take place.
Also on the side of future research lies the dynamics of the
condensate for negative scattering lengths and the extension
of the current observations to multicomponent condensates.
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